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  Abstract 
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Abstract Excessive neutrophil activation is a feature of many inflammatory diseases. Neutrophils from affected patients are prone to release reactive oxygen species (ROS) and toxic granule proteins or to undergo NETosis, a special form of cell death characterized by the release of extracellular DNA traps (NETs). Indeed, neutrophils have been shown to play a critical role in the development of autoimmune diseases, as NETs provide autoantigens, such as double-stranded DNA in systemic lupus erythematosus (SLE) or myeloperoxidase (MPO) in ANCA-associated vasculitis. Nonetheless, the molecular switches regulating neutrophil effector functions remain to be further characterized. HVCN1 is the only voltage-gated proton channel in mammals that regulates pH and membrane potential during neutrophil activation. Its function supports the electrogenic activity of the ROS-generating enzyme NADPH oxidase. Therefore, NADPH oxidase-dependent ROS production is significantly impaired in the absence of HVCN1. However, not much is known about how HVCN1 regulates neutrophil downstream functions. Therefore, in the first part of my thesis, I further investigated the role of HVCN1 in neutrophils. I demonstrated that PMA-stimulated NETosis and MPO release were significantly increased in HVCN1  neutrophils. Fittingly, HVCN1  neutrophils showed atypical mobilization of calcium, increased histone citrullination, and high mitochondrial ROS caused by calcium-dependent mitochondrial depolarization. Increased NETosis, MPO release, and mitochondria ROS could be rescued by intracellular calcium chelation but not by antioxidants, suggesting that calcium is the primary determinant of increased NETosis susceptibility in HVCN1  neutrophils. I further examined the consequences of HVCN1 deficiency in vivo. In agreement with previous reports, young HVCN1  mice did not exhibit a pathogenic phenotype, however we detected a mild (auto-) inflammatory phenotype in aged, female HVCN1  mice. Likewise, HVCN1  mice showed more severe pathology in two models of inflammation. Correspondingly, we found HVCN1 to be downregulated in neutrophils from SLE patients in two separate datasets.  This is the first study to show that HVCN1 deficiency increases the inflammatory capacity of murine neutrophils in vitro and in vivo, suggesting that downregulation of HVCN1 may have implications for human disease.        
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rounding of the cell115,116. Actin filament disassembly was proposed to be important for nuclear translocation of NE and to later allow the release of decondensed DNA into the extracellular space116,117. Microtubules are also disassembled, however, this does not appear to be critical because pharmaceutical inhibition or stabilization of microtubules has no effect on NETosis115. At the same time, the nucleus begins to lose its characteristic lobular shape as the lamin B receptor is lost and heterochromatin detaches118.  Subsequently, decondensation of chromatin begins, which - depending on the underlying mechanism - is mediated by various enzymes either through histone modifications or direct histone cleavage. In order for chromatin to be released into the cytosol, the nuclear envelope must be disintegrated. Lamins are filament proteins that support the integrity of the nuclear envelope118. During NETosis, lamins can either be cleaved directly119 or can be phosphorylated120 and subsequently disassembled, leading to nuclear envelope instability. In addition, even before rupture, the nuclear envelope can be permeabilized by gasdermin D. This pore-forming protein can be cleaved by NE and thereby activated121. Gasdermin D pores in the nuclear membrane would then allow further proteases to access chromatin. Finally, nuclear rupture is thought to be a passive event caused by entropic pressure generated by the "swelling" of decondensed chromatin115.  Gasdermin D is also thought to form pores in the plasma membrane leading, to gradual permeabilization of the neutrophil116. The plasma membrane is further weakened by degradation of the cortical actin cytoskeleton and eventually ruptures under the force caused by chromatin swelling115. 
1.3.4.2 NADPH oxidase-dependent pathway  Early publications on NETosis already describe the importance of NADPH oxidase-generated ROS for NETosis. Fuchs et al.79 showed that inhibition of the oxidase significantly decreased NET formation induced by phorbol-12-myristat-13-acetat (PMA) and S.aureus. Accordingly, neutrophils from CGD patients were unable to undergo NETosis in the same setting. Addition of H2O2, however, induced NET formation in both healthy and CGD neutrophils. One mechanism through which ROS can induce NETosis is their potential to promote dissociation of the azurosome (Fig. 1.4, left). This protein complex resides on the membrane of primary granules of resting neutrophils and consists of MPO, NE, PR3, azurocidin, cathepsin G, defensin-1, eosinophil cationic protein, lysozyme, and lactoferrin. In the presence of H2O2, the azurosome disassembles and MPO mediates the release of proteases, especially NE, into the cytosol117. NE can then cleave actin, a process known to be important for subsequent swelling of chromatin. NE translocates further into the nucleus where it cleaves histones, leading to decondensation of the chromatin. At later stages, MPO also translocates into the nucleus, and its binding to chromatin further enhances decondensation independently of its peroxidase function122. In addition, excessive DNA damage 
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As a result, neutrophils produced significantly less ROS, which impacted their capacity to kill bacteria in vitro. In vivo, however, HVCN1-deficient mice were able to eliminate several different pathogens as efficient as their wild type counterparts171,174. Interestingly, a recent study showed that, in contrast to strong stimuli, low-dose chemotactic agents led to increased ROS production in HVCN1-deficient neutrophils. Increased ROS levels induced ERK signaling, enhancing directional migration175.  
Phagosomal pH.   HVCN1 is not only located on the plasma membrane of neutrophils, but also in phagosomes. Here, the channel helps to sustain phagosomal ROS production and balance pH, by providing protons that react with NADPH oxidase-generated superoxide to produce H2O2. Whereas wild type neutrophils were shown to maintain a neutral pH in their phagosomes, phagosomes in HVCN1-defiecent neutrophils appeared to be either too acidic or too alkaline176. This effect is probably due to a different recruitment of the v-ATPase: in phagosomes with residual NADPH oxidase activity, ROS prevented the recruitment of the v-ATPase, hence the phagosome alkalinized. However, in phagosomes where ROS were absent, successful recruitment of the v-ATPase induced acidification. This could have direct effects on the killing of phagocytosed bacteria, since neutrophil proteases require a neutral pH to fully function104 and could explain why HVCN1-deficient neutrophils show impaired killing in vitro. 
Degranulation.   A study on HVCN1-deficient neutrophils further revealed a role for HVCN1 in degranulation. Okochi et al.174 reported that HVCN1-deficient neutrophils secreted more primary granule proteins, namely MPO and NE. Pretreatment with the potassium ionophore valinomycin partially rescued increased granule release, which led the authors to conclude that increased membrane depolarization in HVCN1-deficient neutrophils is responsible for augmented granule release. HVCN1-deficient neutrophils displayed more severe lung inflammation after intranasal inoculation with C. albicans which might be a direct effect of increased granule release in vivo. 
Calcium mobilization. Two studies investigated the calcium response in HVCN1-deficient neutrophils. El Chemaly et al.173 demonstrated that in the absence of HVCN1, the driving force for calcium entry is reduced, due to the accumulation of positively charged protons in the cytoplasm. Defective calcium mobilization resulted in impaired random migration of HVCN1-deficient neutrophils after stimulation with a chemotactic agent. Thus, they proposed that HVCN1 is important to maintain the influx of extracellular and allow normal migration. In contrast, Okochi et al.175 found no differences in calcium mobilization after stimulation with different concentrations of chemotactic agents. Rather, low doses of stimulants resulted in increased migration of HVCN1-deficient neutrophils, they suggest most likely through enhanced ERK signaling. 
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1 ml PBS/2 mM EDTA. Through the catheter, lungs were filled with 1 ml 4% PFA, dissected out and fixed in 4% PFA overnight before paraffin-embedding. Analysis of pulmonary hemorrhages was performed by quantification of hemoglobin in the BAL. To this end 75 µl BAL was diluted serially and its optical density was measured at 400 and 600 nm. Values in the linear range below saturation (OD400-600 = 1.5) were selected and corrected for the dilution factor. Lavage supernatant and cells were separated by centrifugation. Supernatant was stored at -20 °C for quantification of cfDNA and MPO. Peritoneal cells were analyzed by flow cytometry or frozen at -80 °C for molecular analysis.  
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remove any surface-bound dextran and analyzed by flow cytometry. Indeed, PMA stimulation induced uptake of TRITC dextran in neutrophils of both genotypes. However, HVCN1  neutrophils ingested more dextran, indicating increased pinocytosis (Fig. 4.17 B and C).  In summary, it could be demonstrated that primary granule release (i.e., MPO) but not tertiary granule release (i.e., MMP-9) is enhanced in HVCN1  neutrophils compared to wild type controls. This phenomenon is also caused by increased intracellular calcium, since chelation of calcium significantly reduced granule release. Furthermore, HVCN1  neutrophils increase fluid-phase pinocytosis, which may be a mechanism for retrieving parts of the granule membrane.     
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pH after NADPH oxidase-induced acidification indicating that HVCN1 is crucial for successful proton extrusion. HVCN1 is not the only molecule that can mediate proton efflux. Neutrophils also express the sodium-proton exchanger 1 (NHE1)207, which regulates pH in almost all cell types. NHE1 is expressed on the plasma membrane and uses the sodium gradient as a driving force to export protons while importing sodium in an electroneutral manner. I could demonstrate that inhibition of NHE1 in wild type neutrophils impaired pH rebalancing to a similar extent as loss of HVCN1 (Fig. 4.7 B). This indicates that both, HVCN1 and NHE1 contribute to proton extrusion after NADPH oxidase activation in neutrophils. Interestingly, our data further indicate that in HVCN1  neutrophils, NHE1 seems to partially compensate for the loss of the channel. We base this hypothesis on the fact that after stimulation, sodium influx was increased in HVCN1  neutrophils. Furthermore, inhibition of NHE1 in HVCN1  neutrophils strongly exacerbated acidification.  Besides inducing acidification, proton accumulation also increases the membrane potential. Protons are positively charged ions and therefore rising intracellular proton concentrations lead to membrane depolarization. Accordingly, I could demonstrate that HVCN1 is required to maintain the membrane potential, given that HVCN1  cells strongly depolarized upon stimulation (Fig. 4.8 A). It must be noted that pH compensation through NHE1 is not able to prevent depolarization of HVCN1  neutrophils as the exchange of proton and sodium is electroneutral. Depolarization of the membrane was shown to slow down the transport of electrons through the NADPH oxidase. At a membrane potential of + 200 mV the activity of the NADPH oxidase is blocked completely. Thus, it was proposed that membrane depolarization due to loss or inhibition of HVCN1 causes reduced ROS generation by the NADPH oxidase222. In fact, we and others have shown that extracellular ROS production was significantly decreased in HVCN1  neutrophils171,173. This mechanism also holds true for other immune cells capable of a respiratory burst, such as eosinophils179 or macrophages (unpublished data). Besides PMA, which is the most commonly used activator for neutrophils, I could show that ROS production in HVCN1  neutrophils is also impaired upon stimulation with zymosan (data not shown) or plate-bound IgG (Fig. 4.19 A).  Since ROS play an important role in antimicrobial defense223, decreased ROS production in HVCN1  neutrophils would directly lead to impaired killing of pathogens. Previous studies have shown that S. aureus survival was slightly higher in co-cultures with HVCN1  neutrophils compared with wild-type controls171. In contrast, I showed that killing of E. coli was not impaired in HVCN1  neutrophils (Fig. 4.20 B). These differences could be due to the different sensitivity of the pathogens to ROS223. However, in general, it appears that HVCN1  neutrophils can compensate for the reduced ROS production by other killing mechanisms. For example, it has been 
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In support of the finding that NETosis is enhanced in HVCN1  neutrophils, Zhu et al.179 reported that HVCN1  eosinophils also increasingly undergo an activation-induced lytic form of cell death after stimulation with PMA. Since eosinophils are also capable of generating extracellular DNA traps227, this lytic form of cell death may follow a similar mechanism as observed in HVCN1  neutrophils.  Previously, two molecular pathways of NET formation have been described. The classical pathway depends on ROS production by the NADPH oxidase and can be induced by various stimuli, including PMA. This pathway is blocked by NADPH oxidase inhibitors and is absent in human or mice deficient for the NADPH oxidase79. Besides that, a NADPH oxidase-independent pathway of NET formation was identified108,128, which is mainly triggered by calcium ionophores, such as ionomycin or A23187, but also by Group B Streptococcus108,228. Here, high levels of intracellular calcium induce a strong activation of PAD4, which directly citrullinates histones229. This, in turn, induces a fast disassembly of DNA-histone complexes and chromatin decondensation. In contrast, major histone citrullination does normally not occur in NETosis following PMA stimulation108.  Accordingly, I could show that in HVCN1  neutrophils, histone citrullination was significantly increased compared to wild type controls. This suggests NET formation in PMA-stimulated HVCN1  neutrophils may be triggered by enhanced calcium-mediated PAD4 activation rather than NADPH oxidase-dependent ROS production (Fig. 4.5). There are contradictory reports about the necessity of PAD4 activation for induction of NETosis. While some studies report that inhibition of PAD4 prevents NET release116,229 others claim that PAD4 activation is a feature of NET formation but not required for it108,230. Hence, it would be interesting to further analyze the importance of PAD4 activation and histone citrullination in HVCN1  neutrophils, for example through chemical inhibition or usage of PAD4/HVCN1-double deficient mice. Interestingly, Zhou et. al231 could show that in human neutrophils, PAD4 is able to citrullinate subunits of the NADPH oxidase leading to disassembly of the complex and hence reduced ROS production. Further experiments could investigate whether citrullination of these subunits is an additional factor causing reduced ROS production in HVCN1  neutrophils.  In line with the above mentioned findings, I could show that chelation of intracellular calcium with BAPTA-AM led to a significant reduction of NET formation in HVCN1  neutrophils comparable to wild type levels (Fig. 4.15 A and B). NET formation in wild type neutrophils was only mildly reduced by BAPTA-AM. Fittingly, in human neutrophils it was shown that chelation of intracellular calcium can reduce NET formation induced by both PMA or calcium ionophores232,233. This suggests that PMA-induced NET formation also relies on some calcium-mediated signaling events, but may require smaller changes in calcium levels compared to calcium ionophore-induced NET formation. Since calcium ionophore-induced NET formation involves calcium influx from the 
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located on the ER237. However, PMA stimulation normally only induces activation of PKC which is downstream of ER calcium release. Nonetheless, it was previously shown that for example in mouse embryonic fibroblasts238 or human intestinal epithelial cells239 ROS can activate PLC directly, suggesting a potential role for the increased intracellular ROS levels observed in HVCN1  neutrophils. Despite this, the observation that treatment with an antioxidant did not reduce NETosis in HVCN1  neutrophils indicates that ROS-induced PLC activation does not play a role. Further experiments should aim to analyze if PLC might be activated in HVCN1  neutrophils and if ER calcium release could be induced by increased levels of IP3. HVCN1 is also expressed intracellularly (Fig. 4.1 C) and possibly also influences pH of acidic intracellular compartments, including neutrophil granules, which are also known to store calcium240,241. Two pore channels (TPCs) are non-selective cation channels that are primarily expressed on acidic organelles and can be activated by binding to NAAPD or PIP2. Interestingly, gating of these channels is further regulated by differences in pH and voltage (intraluminal versus intracellular). Local release of calcium from acidic organelles can convert into global calcium waves by inducing calcium-induced calcium release through IP3R or ryanodine receptors from the ER a process best described in muscle cells but known to take place in various cell types242. We confirmed expression of Tpcn1 and Tpcn2 in neutrophils, however not much is known about their role in calcium control in neutrophils. Further experiments therefore should aim to test if these channels are activated during stimulation of HVCN1  neutrophils. While it remains unclear what causes the release of calcium from the ER in HVCN1  neutrophils, for the second wave caused by extracellular calcium influx we assume that there are two alternative mechanisms (Fig. 5 C and D). The first, already well described in lymphocytes, is store-operated calcium entry (SOCE). This process is triggered by depletion of calcium from the ER, which is sensed by the stromal interaction molecule (STIM), a calcium-sensitive protein located in the ER membrane. Upon calcium depletion, STIM oligomerizes and activates the calcium release-activated calcium channel (CRAC) protein 1 (ORAI1, the pore subunit of the CRAC channel) in the plasma membrane that facilitates influx of calcium243. Until now, there is only little indication that SOCE might regulate NET formation. There is one study showing that emptying of the ER by Thapsigargin alone is enough to induce NETosis244. Furthermore, Muñoz-Caro et al.245 showed that inhibition of SOCE reduced parasite-induced NET formation. However, the inhibitor used (2-APB) is also known to have many off-target effects such as an activation of transient receptor potential (TRP) channels. In contrast to the limited information of the role of SOCE in NETosis, many studies could show an important role for STIM1 and STIM2 in phagocytosis, degranulation and ROS production246. Usage of a more specific inhibitor of STIM, such as YM 58483, could help to clarify the exact role of SOCE in calcium mobilization in HVCN1  neutrophils. 









  Discussion 

 83 

granules requires the highest levels of calcium261. This might explain why higher levels of intracellular calcium observed in HVCN1  neutrophils might be enough for the release of primary granules whereas lower calcium levels in wild type neutrophils are not sufficient to induce the release of primary granules. Interestingly, in other immune cells degranulation is also regulated by local calcium release from acidic granules. For example, in human cytotoxic T cells, calcium flux through two pore channels (TPCs, also see 5.3) was described to be essential for exocytosis of cytolytic granules262. In the presence of TPC inhibitors, global calcium flux from the ER failed to induce degranulation in T cells. Exocytosis rather required local perigranular calcium domains created by release of granular calcium through TPCs. In contrast, genetic deletion of TPC1 in murine mast cells leads to increased degranulation upon stimulation263, because in TPC1  mast cells, more calcium is stored in the ER as TPC-regulated calcium storage in lysosomes is reduced. Following stimulation, more calcium is released from the ER of TPC1  mast cells, resulting in enhanced degranulation. The regulation of degranulation by TPCs was not yet investigated in neutrophils. However, our data suggest that TPC1 and TPC2 are highly expressed in murine neutrophils (Fig. 4.9) and might therefore play a role in the control of degranulation. Given the central role for calcium in degranulation, it was not surprising to find that chelation of intra- or extracellular calcium reduced MPO secretion in HVCN1  neutrophils (Fig. 4.16 A). However, calcium chelation did not completely abolish primary granule release, which suggests that HVCN1 can regulate degranulation via additional factors.  In many cell types, low intravesicular pH was shown to promote exocytosis264,265. In neutrophils, alkalinization of granules with the v-ATPase inhibitor bafilomycin results in a significant reduction in primary granule release266. Interestingly, activation of v-ATPase is not only critical for acidification of granules, but was also shown to act as a sensor of granule pH267 and, in addition, serves as an adaptor for proteins that mediate membrane fusion268,269. Therefore, the localization of v-ATPase to the granules is a crucial mechanism for triggering degranulation. Interestingly, HVCN1 was shown to regulate v-ATPase recruitment to phagosomes in a ROS-dependent manner176. Phagosomes from HVCN1  neutrophils exhibit either very high or very low pH, depending on whether or not there is residual activation of NADPH oxidase. Although primary granules are the only ones that show minimal expression of HVCN1 (Fig. 4.1 C), we cannot exclude the possibility that the presence of HVCN1 on their membranes may still affect granule pH or that proton channels play a role in an indirect manner. Therefore, measurements of granule pH and localization studies of v-ATPase are necessary to clarify whether intragranular pH affects the increased degranulation in HVCN1  neutrophils.  In line with our findings, Gewirtz et al.236 demonstrated that inhibition of NHE1 and subsequent acidification of human neutrophils led to increased release of primary granules upon FcR stimulation. Interestingly, the authors could not detect an increase in intracellular calcium, but 
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chemotactic agent fMIVIL as a result of impaired calcium entry. In contrast, Okochi et al.175 reported that HVCN1  neutrophils showed enhanced undirected as well as directed migration across the membrane of a transwell chamber, particularly at low concentrations of the chemotactic agent fMLP (up to 1 µM). They could further demonstrate that the enhanced migration is due to a cell-intrinsic mechanism that depends on ROS-driven ERK phosphorylation.  In addition to intrinsic cellular factors, migration of neutrophils into the peritoneal cavity could also be promoted by increased levels of chemokines or other proteins with chemotactic activity. Neutrophil recruitment is mainly driven by CXCL1 and CXCL2, which are produced by peritoneal macrophages upon pathogen encounter271. Recently, it was shown that peritoneal mast cells also produce these two chemokines272. Since I used global HVCN1  mice for this experiment, it must be considered that all other immune cells are also deficient in HVCN1. There are no studies yet on chemokine production in HVCN1  macrophages. However, it has been shown that in the presence of zinc, activated mast cells show increased degranulation273, and mast cell granules also contain CXCL1272. Therefore, it would be interesting to investigate if HVCN1  mice have higher levels of chemotactic molecules after zymosan injection and if this could be due to loss of HVCN1 in macrophages or mast cells.  Moreover, HVCN1  neutrophils themselves might release increased chemotactic molecules. The characteristic self-amplifying swarming behavior of neutrophils is triggered by the release of leukotriene B4 (LTB4) and CXCL2 from early recruited neutrophils, leading to further recruitment of neutrophils from the circulation274. Because HVCN1  neutrophils show increased degranulation, one could speculate that they also release more chemoattractants. Quantification of chemoattractants in supernatants from neutrophils stimulated in vitro or in the peritoneal lavage would help to understand if loss of HVCN1 leads to enhanced LTB4-induced neutrophil swarming. Furthermore, the loss of HVCN1 impairs phagosomal acidification of macrophages176, suggesting that these cells might display impaired digestion of apoptotic cells. Interestingly it was shown that impaired efferocytosis of apoptotic neutrophils by macrophages leads to neutrophil accumulation and increased production of inflammatory cytokines in the peritoneal cavity after zymosan injection275. Hence, potential impairment of efferocytosis in HVCN1  macrophages could contribute to enhanced peritoneal inflammation in HVCN1  mice. Taken together, increased neutrophil numbers in the peritoneal cavity of HVCN1  mice could be explained by neutrophil-intrinsic factors, i.e., increased immature neutrophil numbers, augmented migration or release of chemoattractants such as LTB4, or by changes in other immune cells, i.e., increased release of chemokines or impaired efferocytosis. In order to exclude the contribution of HVCN1 deficiency in other immune cells, it would be necessary to analyze neutrophil-specific HVCN1  mice. Until now, we were not able to generate an effective neutrophil-specific deletion of HVCN1 (see 5.8).  
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Furthermore, I detected higher MPO levels in the peritoneal cavity and serum of HVCN1  mice treated with zymosan compared with wild type controls (Fig. 4.23 D & E). Higher MPO levels in the peritoneal cavity correlate with the observed increased neutrophil count. Elevated blood MPO levels could either reflect increased mobilization of neutrophils into the circulation or, in agreement with my data obtained in vitro, result from increased degranulation or NETosis of HVCN1  neutrophils. Increased MPO levels in the blood could further promote neutrophil infiltration into the peritoneal cavity. It was shown that due to its positive charge, MPO binds to heparan sulfate glycosaminoglycans, which are part of the endothelial glycocalyx. Thereby it creates a positively charged surface that allows binding of negatively charged neutrophils276. Furthermore, MPO can bind to CD11b supporting migration277, activation278 and prolonged survival279 of neutrophils. In addition to MPO, it would be interesting to also analyze NET formation in the peritoneal cavity after injection of zymosan. However, identification and quantification of NETs in vivo is very challenging. Measurement of cell-free DNA alone is not sufficient to prove NET formation as DNA is also expelled from necrotic cells. Furthermore, in vivo NETs are rapidly degraded by DNases which makes it even more challenging to detect them. According to Yousefi et al.280, the only reliable method to unambiguously show NET formation in vivo is by histological analysis. Therefore, quantification of NETs in the peritoneal cavity might not be possible.   To further study the role of HVCN1 in inflammation, we decided to subject wild type and HVCN1  mice to a model of anti-neutrophil cytoplasmic antibody (ANCA)-associated pulmonary vasculitis (AAPV)220. In contrast to zymosan-induced peritonitis, AAPV reflects an autoimmune disease primarily driven by neutrophils. In this model, administration of fMLP and LPS is intended to mimic a bacterial infection which often causes severe flare-ups in AAPV patients281. Intratracheal administration of these two ligands leads to neutrophil recruitment into the pulmonary vasculature and additionally stimulates neutrophils to expose MPO on their surface. This step is crucial for the subsequent activation of neutrophils by anti-MPO antibodies administered intraperitoneally282 (Fig. 4.24). At day 3 after AAPV induction, we observed a similar lung pathology between wild type and HVCN1 . However, augmented weight loss and an increase in lung hemorrhages indicated enhanced inflammation in HVCN1  mice. In line, the number of neutrophils in the BAL of HVCN1  mice was increased compared to wild type controls, despite total leukocyte numbers not being different between genotypes. At this time point of the disease model, it is most likely that cells recovered from the BAL did not actively migrate into the lung tissue, but rather entered passively through damaged vessels. Hence, increased numbers of neutrophils in the BAL could be an indicator for increased vessel permeabilization or could reflect increased numbers of neutrophils mobilized from the bone marrow. Enhanced mobilization could be caused by increased numbers of immature neutrophil 
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in the bone marrow of HVCN1  mice or reflect increased overall inflammation. Of note, number of neutrophils in the lungs of fMLP/LPS treated control mice were similar between wild type and HVCN1  at day 3. However, it would be important to analyze neutrophil numbers at earlier time points to exclude that increased recruitment at earlier time points, which we observed in the peritonitis model, is causing augmented inflammation at day 3 of AAPV. The main cause of vasculature damage in AAV is the activation of neutrophils by ANCAs283. These autoantibodies can bind to their antigens exposed on the surface of neutrophils and can additionally bind Fc receptors, which leads to enhanced neutrophil activation284,285. The fact that HVCN1  neutrophils release more MPO in vitro would suggest that the increased inflammation in AAPV may be due to increased exposure of MPO on the surface of neutrophils. However, we did not detect increased levels of MPO in the blood of AAPV mice compared to control mice. This suggests that MPO might be sequestered by the injected anti-MPO antibodies and thus is not suitable for measuring degranulation in this model. To confirm the increased degranulation of HVCN1  neutrophils in AAPV, levels of neutrophil elastase or PR3 in the circulation could be determined.  Moreover, primed neutrophils activated by ANCAs were shown to undergo NETosis142. Accordingly, AAV patients display higher levels of NET remnants (nucleosome-MPO complexes) in their circulation144. Interestingly, in another mouse model for vasculitis, inhibition of PAD was shown to reduce serum levels of ANCAs, which suggests that PAD4-driven NET formation is enhancing autoantibody production by providing autoantigens286. In our model, no increase in cell-free DNA could be detected in the BAL of AAPV mice in comparison with control mice. However, because cell-free DNA is not a sufficient indicator of NETosis in vivo anyway, we are attempting to quantify histone citrullination in neutrophils by histological examination of lung tissue. Furthermore, stimulation of primed neutrophils with ANCAs in vitro could be useful to assess if HVCN1  neutrophils also show enhanced NET formation in the AAPV setting. Applying the same AAPV model, Kessler et al.220 were able to show that disease severity is highly dependent on interferon signaling in monocyte-derived macrophages. As we used global HVCN1  mice, also monocytes are deficient for HVCN1. Thus, we cannot rule out that loss of HVCN1 would also influence the activation and interferon production by these cells. Not much is known about how HVCN1  macrophages are reacting during inflammation. Studies in related cells, such as microglia182,186, however suggest that loss of HVCN1 would lead to a less inflammatory phenotype of macrophages. Hence, the phenotype observed in HVCN1  mice could be a result of increased neutrophil inflammation on the one side and reduced macrophage activation on the other hand.  Since it was shown that immune cell infiltration and hemorrhages peaked at day 3 after vasculitis induction220, we chose that time point for our analysis. At this time, the differences in pathology between genotypes, although small, are suggestive of increased and ongoing neutrophil-driven 
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neutrophils of SLE patients and healthy controls for HVCN1 expression, and are also conducting functional assays with neutrophils, in order to test if an inverse correlation between HVCN1 expression and calcium-dependent NETosis exists, similarly to HVCN1  murine neutrophils.  In addition, decrease in HVCN1 protein levels can also be a result by proteolytic cleavage. Hawkins et al.295 demonstrated that HVCN1 can be degraded by NE. They showed that in patients with alpha-1 antitrypsin deficiency (AATD), a serine protease inhibitor, neutrophils have lower surface HVCN1 levels, likely due to decreased inhibition of NE. Interestingly, AATD patients suffer from neutrophil-induced emphysematous lung disease. These results also suggest that lower HVCN1 levels in neutrophils are associated with increased inflammation. Along the same lines, we plan to have follow-up testing of SLE patients to evaluate if HVCN1 expression could decrease further in the course of the disease and serve as a marker for disease progression.  Our findings also have implications for the use of HVCN1 as a drug target. As described previously, HVCN1 represents a promising target for the treatment of cancer because HVCN1 expression in tumors correlates positively with tumor size, tumor classification, or clinical stage296. In addition, studies in microglia suggest that inhibition of HVCN1 may lead to beneficial outcomes in ischemic stroke or neurodegenerative diseases153. However, my data suggest that systemic treatment with HVCN1 inhibitors might have side effects as a result of inhibition of HVCN1 in neutrophils, causing increased NETosis that could cause general neutrophil-driven inflammation, as well as potentially be counterproductive in cancer and also neurodegeneration. Therefore, it is important that any potential effect of HVCN1 inhibition is thoroughly investigated. Neutrophils were identified as important players in the immune response to tumors. In late-stage cancer, neutrophils acquire pro-tumorigenic features71. In this context, NET formation was shown to aid the development of metastasis297. Furthermore, increased NET formation was shown to stimulate cancer-associated thrombosis, which is associated with a poorer prognosis in cancer patients298. Therefore, increased NET formation in neutrophils in the presence of an HVCN1 inhibitor could promote tumor growth, and hence needs to be carefully evaluated.  Recently, NET formation was also detected in cortical vessels and brain parenchyma of patients with Alzheimer's disease (AD), and NETs were proposed to harm the blood-brain barrier and neurons299. Accordingly, neutrophil depletion rescued AD pathology and improved cognitive function in a mouse model of AD300. Furthermore, MPO release by neutrophils was shown to contribute to endothelial damage in the brain in the context of AD301. Thus, inhibition of HVCN1 in neutrophils in neurodegenerative diseases could also interfere with therapeutic effects.  Nevertheless, the advantages and disadvantages of systemic HVCN1 inhibition must be evaluated individually in each disease context, as different cell types have different degrees of impact on pathology. For example, results from our laboratory indicate that global HVCN1 deficiency has a positive effect on cognitive performance of mice in the APP/PS1 mouse model of Alzheimer's 
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FACS panel & gating – General blood panel  
Antigen Conjugate 

CD45  BV711 

CD11b  PE 

Ly6G  BUV563 

Ly6C  eF450 

CXCR2  APC 

CD3  BUV737 

CD19  PE-Cy5 

Live/Dead Zombie Aqua  
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FACS panel & gating – Neutrophil progenitors Published in Evrard et al. (2018)  
Antigen Conjugate  

B220 PE-Cy7 

Lineage 

CD115 PE-Cy7 

CD3e PE-Cy7 

CD90.2 PE-Cy7 

NK1.1 PE-Cy7 

Sca1 PE-Cy7 

cKit BV711  

CXCR2 AF647  

CXCR4 V450  

Live/Dead Zombie Aqua  

Gr1 APC-Cy7  

Ly6G BUV563  

CD11b BUV395  

SiglecF PE   
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FACS panel & gating – GMPs  
Antigen Conjugate 

Ter119 APC-Cy7 

CD19 APC-Cy7 

NK1.1 APC-Cy7 

Ly6G APC-Cy7 

CD3e APC-Cy7 

B220 APC-Cy7 

Live/Dead Near-IR 

cKit PE-Cy7 

Sca1 BV421 

CD16/32 AF647  

CD34 FITC  
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FACS panel & gating – Peritonitis (lavage)  
Antigen Conjugate 

CD45  BV711 

CD11b PE 

Ly6G BUV563 

CD3 APC 

B220 PE-Cy7 

Ly6C PerCp-Cy5.5 

gdTCR PE 

Live/Dead Near-IR  
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Cell Profiler Analysis – Parameters for classification  
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